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Abstract

The celebrated Ore-DeMillo-Lipton-Schwartz-Zippel (ODLSZ) lemma asserts that n-variate
non-zero polynomial functions of degree d over a field F, are non-zero over any “grid” (points of
the form Sn for finite subset S Ď F) with probability at least maxt|S|´d{p|S|´1q, 1 ´ d{|S|u over
the choice of random point from the grid. In particular, over the Boolean cube (S “ t0, 1u Ď F),
the lemma asserts non-zero polynomials are non-zero with probability at least 2´d. In this work
we extend the ODLSZ lemma optimally (up to lower-order terms) to “Boolean slices” i.e., points
of Hamming weight exactly k. We show that non-zero polynomials on the slice are non-zero
with probability pt{nqdp1 ´ onp1qq where t “ mintk, n ´ ku for every d ď k ď pn ´ dq. As with
the ODLSZ lemma, our results extend to polynomials over Abelian groups. This bound is tight
upto the error term as evidenced by multilinear monomials of degree d, and it is also the case
that some corrective term is necessary. A particularly interesting case is the “balanced slice”
(k “ n{2) where our lemma asserts that non-zero polynomials are non-zero with roughly the
same probability on the slice as on the whole cube.

The behaviour of low-degree polynomials over Boolean slices has received much attention in
recent years. However, the problem of proving a tight version of the ODLSZ lemma does not
seem to have been considered before, except for a recent work of Amireddy, Behera, Paraashar,
Srinivasan and Sudan (SODA 2025), who established a sub-optimal bound of approximately
ppk{nq ¨ p1 ´ pk{nqqqd using a proof similar to that of the standard ODLSZ lemma.

While the statement of our result mimics that of the ODLSZ lemma, our proof is significantly
more intricate and involves spectral reasoning which is employed to show that a natural way of
embedding a copy of the Boolean cube inside a balanced Boolean slice is a good sampler.
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1 Introduction

The Ore-DeMillo-Lipton-Schwartz-Zippel (ODLSZ) [Ore22; DL78; Zip79; Sch80] lemma captures
the basic algebraic fact that a low-degree polynomial does not have many roots on a “nice set” of
points. The standard nice set for this lemma is a grid Sn (where S is a finite subset of a field)
and a version of this lemma states that no non-zero degree-d polynomial can vanish on more that
d|S|n´1 points. This is easily seen to be tight: Take, for example, a univariate polynomial that has
d roots in S.

There also exist useful variants of this lemma for the case where |S| ă d. The example above shows
that in general a degree-d polynomial can vanish over all of Sn and so some further condition is
necessary. The most obvious condition is to simply force the polynomial to be non-zero on the
grid Sn. In the setting of the Boolean cube, i.e. S “ t0, 1u, which is the setting we study, this is
equivalent to considering non-zero multilinear polynomials of degree d. In this setting (a variant of)
the ODLSZ lemma states that a non-zero multilinear polynomial of degree d is non-zero on at least
2n´d points of t0, 1un. Again, this is tight: Take, e.g., a multilinear monomial of degree d.

Though both these forms of the ODLSZ lemma are simple statements with easy inductive proofs,
they have many different applications in the design of randomized algorithms [RV89], proba-
bilistically checkable proofs [BFLS91; ALMSS98], pseudorandom constructions [DKSS13; GRS23],
Boolean function analysis [NS92], data communication [ABCO88], small-depth circuit lower bounds
[PS90; HRRY19] and extremal combinatorics [SS08].

In this paper, we extend the ODLSZ lemma to a different nice set namely the Boolean slice, which
is an important subset of the Boolean cube t0, 1un. For a parameter k, we use t0, 1unk to denote the
kth Boolean slice, i.e., the set of points in the cube of Hamming weight exactly k. The behavior
of low-degree polynomials on Boolean slices has received quite a bit of attention recently with
motivations from learning theory [OW13], Boolean function analysis [Wim14; Fil16; FKMW18;
FI19], property testing [DDGKS17; KLMZ24], circuit lower bounds [HRRY19], and local decoding
algorithms [ABPSS24]. However, as far as we know, the natural question of finding a tight version
of the ODLSZ lemma over Boolean slices has not been considered before. This is the question we
address in this paper.

More precisely, we consider the following question:

Given a polynomial P of degree at most d that does not vanish on t0, 1unk , how many zeroes can
have P have in this set?

This question makes sense when d ď t :“ mintk, n ´ ku, since any function on t0, 1unk can be
expressed as a polynomial of degree t.

We give a near-optimal answer to this question for low-degree polynomials. More precisely, our
main theorem is stated below. It holds for polynomials over any field and even in the case where
the coefficients come from an Abelian group1 (as is also true of the standard version of ODLSZ
lemma over the Boolean cube).

1A multilinear polynomial over an Abelian group G is of the form
ř

SĎrns
aS

ś

iPS xi where aS P G for each
S. Polynomials over such domains appear naturally in applications to circuit complexity [BHLR19] and additive
combinatorics [TZ12].
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Theorem 1.1 (Main Theorem). There exists an absolute constant ε ą 0 so that the following
holds. Fix an arbitrary Abelian group G and a degree parameter d P N. For all natural
numbers n and k such that d ď k ď n ´ d, the following holds whenever d ď tε where
t “ mintk, n ´ ku:
For any degree-d polynomial P : t0, 1unk Ñ G that does not vanish on t0, 1unk , we have

Pr
x„t0,1unk

rP pxq ‰ 0s ě

ˆ

t

n

˙d

¨

ˆ

1 ´
1

tε

˙

.

We prove Theorem 1.1 in Section 4.2.
At a high level, the uniform distribution on t0, 1unk is similar to the pk{nq-biased distribution,
i.e. the distribution where each coordinate is independently 1 with probability k{n. With slight
modifications to the proof of ODLSZ lemma, one can show (see for example [DFH17, Claim 6.8])
that the probability of sampling a non-zero point from pk{nq-biased distribution is pt{nqd, where
t “ min tk, n ´ ku. The bound given by Theorem 1.1 is equal to this bound up to small error
terms.

Tightness. The bound given is easily seen to be nearly tight using essentially the same example
as in the case of the Boolean cube. For k ď n{2, the monomial x1 ¨ ¨ ¨xd is non-zero with probability
approximately pk{nqd, and there is a similar example for k ą n{2. Moreover, it is also possible to
see that for certain k, an error term is required. For example, assume that G is the finite field F2,
k “ n{2 and d “ 1. Then the linear polynomial x1`x2`1 is non-zero with probability 1{2´Θp1{nq,
implying that the monomial does not yield exactly the optimal bound. In the case that the degree
d “ 1, we can improve the error parameter and show a bound of t{n ´ 1{n (Theorem 6.1 in
Section 6).

Proof Techniques. The standard proofs of the ODLSZ lemma follow a simple inductive strategy,
using the obvious univariate case for both the base case and each inductive step of the argument.
The recent work of Amireddy, Behera, Paraashar, Srinivasan and Sudan [ABPSS24] used a similar
idea to show the following sub-optimal bound. Unfortunately, it is not clear how to make the
inductive strategy work for the slice to get a tight answer.

Lemma 1.2 (Suboptimal distance lemma for slices). [ABPSS24, Lemma 5.1.6]. For every Abelian
group G and non-negative integers d, k, n with n ě 1 and d ď k ď n ´ d the following holds: For
every degree-d polynomial P : t0, 1unk Ñ G that does not vanish on t0, 1unk , we have

Pr
x„t0,1unk

rP pxq ‰ 0s ě

ˆ

n ´ 2d

k ´ d

˙Nˆ

n

k

˙

.

In particular, for k “ n{2 (for an even n), the above probability is at least 4´d.

A computation shows that for small d, the above implies that the fraction of points in t0, 1unk where
P does not vanish is at least ppk{nq ¨ p1 ´ pk{nqqqd (up to small error terms). When k “ n{2, for
example, this bound is 4´d which is quadratically worse than Theorem 1.1.

To get the tight bound, we use a very different approach. We start with the above suboptimal
bound, but combine it with spectral techniques, which we elaborate on next. Note that if the slice
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k “ n{2, i.e. the balanced slice, then we get a bound of nearly 1{2d which is essentially the same as
the ODLSZ lemma over the Boolean cube t0, 1un (Theorem 2.1). To prove this, the high-level idea
is to consider the process of choosing a random subcube in the balanced Boolean slice t0, 1unn{2 as

follows: pair the n coordinates into n{2 pairs uniformly at random, and in each such pair txi, xju,
identify xi with the Boolean negation of xj , i.e. 1 ´ xj . This gives us a random embedding of an
n{2-dimensional cube in the slice t0, 1unn{2 and the polynomial P restricts to a degree-d polynomial
Q on this subcube. If we could guarantee that Q was always non-zero, then the standard ODLSZ
lemma on the cube would give us the desired statement. Unfortunately, there are subcubes on
which P could be identically zero. The main technical lemma is to show that Q is non-zero with
high probability: intuitively, this is because the random process above is a good sampler of the
balanced slice, i.e. the points in the randomly chosen subcube behave essentially like independent
samples of the balanced slice.

Formally, the technical lemma is a statement about the approximate pairwise independence of two
random points of the chosen subcube. We show (see Lemma 3.2) that the probability that two
random points of this subcube lie in a set of density ρ is roughly ρ2. This is done by analyzing a
natural weighted graph Γ on the balanced slice defined by the above sampling process. We show
this via two arguments, depending on the regime of the degree parameter d.

For d ď C log n for a constant C ą 0, the main technical lemma follows from the use of the
Expander mixing lemma [AC88], which implies such a statement using bounds on the second-
largest eigenvalue of the graph. To analyze the second-largest eigenvalue of Γ, we show that it can
be embedded (as an induced subgraph) in a Cayley graph defined on the subgroup of Fn

2 defined by
points of even Hamming weight. The latter is easier to analyze using Boolean Fourier analysis, and
an application of the eigenvalue interlacing theorem allows us to bound the eigenvalues of Γ. See
Section 3.1 for more details. This easier case of the lemma is already interesting: for instance, it
yields a different (arguably easier) proof of a junta theorem on the Boolean slice [FI19], analogous
to a well-known theorem of Nisan and Szegedy [NS92].

For d “ nγ for a small constant γ ą 0, we need to strengthen the guarantee of the sampler. To do
so, we use the fact that the adjacency matrix for Γ can be spectrally upper-bounded by another
matrix2 that satisfies a Hypercontractive inequality (see Lemma 3.11). Intuitively, this is stronger
than an eigenvalue bound, as the latter measures only the worst-case expansion of the underlying
graph, while the former gives us stronger bounds on the expansion of smaller sets. Using this
inequality alongside the Expander mixing lemma yields the desired pairwise independence. See
Section 3.2 for more details.

For imbalanced slices, i.e. k ‰ n{2, we reduce to the balanced case via a random restriction idea (see
Section 4). The main conceptual idea is to obtain a basis for the space of polynomial functions on
a slice. We note, essentially using an argument of Wilson [Wil90], that for many distinct slices, the
space of homogeneous multilinear monomials of degree d forms a basis for the space of polynomials
of degree d on the slice (see Claim 4.5). Unlike other known bases for this space [Fil16], this idea
also works over fields of positive characteristic and even over cyclic groups of prime power order.
For such ‘good’ slices k ď n{2, we reduce to a 2k-dimensional cube via a random restriction (see
Lemma 4.6), which can easily be seen to leave the polynomial non-zero with probability p2k{nqd.

2The technically accurate descriptor for this matrix is the ‘Noise operator in the Bose-Mesner algebra of the
Johnson scheme.’ See Section 3 for details.
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Invoking the balanced case now concludes the lemma for the good slices.

Finally, to extend the main theorem to all slices, we note that for any slice k, there is a good slice
not too ‘far away’ (in the range rk ´ Opdq, ks) (see Lemma 4.8). By setting a few variables at
random to 1, we are able to reduce to a good slice.

Related Work. As mentioned above, the study of low-degree polynomials over Boolean slices has
received much attention in recent years. Closely related to this work is the work of Filmus [Fil16]
that constructs a basis for the space of real-valued degree-d polynomial functions over general
Boolean slices. A recent result of Kalai, Lifshitz, Minzer and Ziegler [KLMZ24] constructs a dense
model for the balanced slice t0, 1unn{2 under the Gowers norm Ud; in particular, this implies that

there is a subset S of t0, 1un of constant density such that any polynomial of degree-d has the same
density over S as it does over the balanced slice. In principle, both these works should be useful in
order to prove a version of the ODLSZ lemma over Boolean slices. However, we note that each of
these results is applicable over different domains (R or F2) while we prove a unified statement that
holds over any Abelian group (and in particular over all fields).

1.1 Applications of Optimal Distance Lemma

To give some idea of the applicability of the ODLSZ lemma over the slice, we prove some variants
of well-known theorems in combinatorics and Boolean function analysis.

Hyperplane covering. Given a subset S of the cube t0, 1un, we define the exact cover number
of S, denoted ecnpSq to be the minimum number of hyperplanes (over some field F) such that their
union intersects t0, 1un exactly in the set S. A classical result of Alon and Füredi shows that for
S being the cube with a single point removed, ecnpSq “ n. This combinatorial result, which easily
follows from with ODLSZ lemma over the cube, has seen many subsequent generalizations (e.g.
[CH20; SW22; BBDM23]).

Using just the sub-optimal version of the ODLSZ lemma (Lemma 1.2), we immediately get an
optimal version of the hyperplane covering over a Boolean slice t0, 1unk with a missing point, instead
of the whole Boolean cube t0, 1un. More precisely, for S Ď t0, 1unk , let ecn,kpSq be the minimum
number of hyperplanes (over some fixed field F) such that their union intersects t0, 1unk exactly in
the set S. Following the idea of [AF93], we have the following.

Theorem 1.3. Let n, k be natural numbers with k P rns. Fix an arbitrary point a P t0, 1unk .
Then ecn,kpt0, 1unkztauq “ mintk, n ´ ku.

Proof of Theorem 1.3. Without loss of generality, we assume that k ď n{2 and a “ 1k0n´k. Let S
denote t0, 1unkztau.

It is easy to see that ecn,kpSq ď k. The hyperplanes Hi “ txi “ 0u for i P rks cover exactly the
points in S.

For the lower bound, assume for the sake of contradiction that there exists m ă k hyperplanes
Hi “ tℓipxq “ 0u (here ℓipxq denotes a degree-1 polynomial and i P rms) covering exactly the
points in S. Then the polynomial P pxq :“

śm
i“1 ℓipxq is non-zero at exactly one point of t0, 1unk .
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However, by Lemma 1.2, P must be non-zero at at least
`

n´2m
k´m

˘

ą 1 points (since m ă k ď n{2) of
t0, 1unk . Hence we arrive at a contradiction. ■

A junta theorem for the slice. Nisan and Szegedy [NS92] showed that any Boolean function
on t0, 1un that has degree d over R depends on Opd2dq variables, i.e. it is a Opd2dq-junta. Chiarelli,
Hatami, and Saks [CHS20] improved the bound to Op2dq. Filmus and Ihringer [FI19] extended this
result to slices and showed that for a suitable range of k, any degree-d (over R) Boolean function
on the slice k is a restriction of a degree-d function on t0, 1un. Along with the result of [CHS20],
this implies that such a function is an Op2dq-junta. While the results of [NS92; CHS20] are fairly
elementary, the theorem of [FI19] is more involved, relying on the Log-Sobolev inequality and
Hypercontractivity for the Boolean slice [LY98; DS96].

Using Theorem 1.1, we show that we can avoid the use of advanced analytic techniques3 in the
proof of [FI19], and give a direct proof (following the proof of [NS92]) of the fact that any degree-d
Boolean function on the balanced slice t0, 1unn{2 depends on Opd2dq variables (see Lemma 5.3).

Plugging this into the proof of [FI19], we can again recover the optimal bound of Op2dq. More
details can be found in Section 5.

Organization of the paper. We provide basic definitions and other preliminaries in Section 2.
We give the proof details of the distance lemma over the balanced slice (i.e., k “ n{2) in Section 3
and then use this to get the same over all slices in Section 4, thus finishing the proof of our main
theorem Theorem 1.1. In Section 5, we present our alternate proof of the junta theorem over slices.
Finally, we obtain an improvement of our main theorem for the case of linear functions (i.e., d “ 1)
as Theorem 6.1 in Section 6.

2 Preliminaries

Notations. Let pG,`q denote an Abelian group G with addition as the binary operation. For
any g P G, let ´g denote the inverse of g P G. For any g P G and integer a ě 0, a ¨ g (or simply ag)
is the shorthand notation of g ` . . . ` g (taken a times), and ´ag denotes a ¨ p´gq.

For any x P t0, 1un, |x| denotes the Hamming weight of x. For any x,y P t0, 1un, let ∆px,yq denote
the Hamming distance between x and y, i.e. ∆px,yq “ | ti P rns | xi ‰ yiu |. For natural numbers
n and k ď n, let t0, 1unk denote the subset of strings in t0, 1un of Hamming weight exactly k.
We denote the set of functions f : t0, 1un Ñ G that can be expressed as a multilinear polynomial of
degree d, with the coefficients being in G by Pdpn,Gq. We also consider functions f : t0, 1unk Ñ G.
We denote the set of functions on t0, 1unk that can be expressed as a multilinear polynomial of
degree d with the coefficients in G by Pdpn, k,Gq. We will simply write Pdpn, kq when G is clear
from the context.

For any natural numbers n and k ď n, Un denotes the uniform distribution on t0, 1un and Un,k

denotes the uniform distribution on t0, 1unk . For a growing parameter n, onp1q denotes a function
that goes to 0 as n grows large.

3We have two proofs of our main theorem. In the general case where d can be as large as nΩp1q, our proof also
relies on hypercontractivity. However, in the case that d ď C logn, which is also the main case of interest for junta
theorems, our proof needs only basic Fourier analysis over the Boolean cube and the eigenvalue interlacing theorem.
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Basic Tools. We start with the standard ODLSZ lemma over the Boolean cube.

Theorem 2.1 (ODLSZ lemma over t0, 1un). Let G be any Abelian group and let P P Pdpn,Gq be
any non-zero polynomial. Then

Pr
x„Un

rP pxq ‰ 0s ě
1

2d
.

Another important tool we require is Lucas’s theorem which allows us to compute binomial coeffi-
cients modulo a prime p.

Lemma 2.2 (Lucas’s Theorem [Luc78]). Let p be a prime number and a and b be any two natural
numbers. Denote a and b in their unique p-ary representations as:

a “

ℓ´1
ÿ

i“0

aip
i, b “

ℓ´1
ÿ

i“0

bip
i, ai, bi P t0, 1, . . . , p ´ 1u

Then,

ˆ

a

b

˙

”

ℓ´1
ź

i“0

ˆ

ai
bi

˙

mod p,

where we define
`

x
y

˘

to be 0 if x ă y.

We will need the following standard facts about expanders and Cayley graphs. We refer the reader
to the survey [HLW06] for more details.

Definition 2.3 (Weighted Cayley Graph). Let pG,`q be a finite Abelian group and w : G Ñ Rě0

be a weight function (we refer to the elements of non-zero weight as generators). We say that a
weighted graph Γ “ ΓpG,wq defined as follows is a weighted Cayley graph over G.

• The vertices of Γ are the elements of G.

• For every g, g1 P G, we add an edge pg, g ` g1q with weight wpg1q to Γ.

The following lemma gives us a way of computing the eigenvalues of the adjacency matrix of
weighted Cayley graphs over Abelian groups.

Lemma 2.4 (Eigenvalues of Cayley graphs, see e.g. [HLW06]). Let Γ “ ΓpG,wq be a weighted
Cayley graph over a finite Abelian group G, where w : G Ñ Rě0 is the corresponding weight func-
tion. Let χ : G Ñ Cˆ be an arbitrary group homomorphism (which we will refer to as a character).
Then, χ is an eigenvector of the adjacency matrix of Γ with eigenvalue equal to

ř

gPGwpgqχpGq.

Following is a consequence of the expander mixing lemma.

Lemma 2.5 (Expander mixing lemma, see e.g. [HLW06] Lemma 2.5). For a symmetric random
walk matrix W over vertices V and every subset S Ď V , it holds that

Pr
u„V,v„Npuq

ru P S and v P Ss ď

ˆ

|S|

|V |

˙2

` µpW q ¨
|S|

|V |
,
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where Npuq denotes the distribution over V corresponding to taking a step from u according to W
(i.e., the u-th row of W ).

3 Distance Lemma for the Balanced Slice

In this section, we state the main technical lemma of our proof for Theorem 1.1. It is a statement
on the “expansion” property of a graph t0, 1unn{2, where the edge weights are given by a random

process. We start by describing a random process that maps a string in t0, 1unn{2 to a string in

t0, 1unn{2. In this section, we will always assume that n is an even number.

Definition 3.1 (The map Γ). Let a P t0, 1un{2 and u P t0, 1unn{2. Let u´1 t0u denote the set

of coordinates where u is 0, i.e. u´1 t0u “ ti P rns | ui “ 0u. Similarly we have u´1 t1u. let
u´1 t1u “

␣

i1, . . . , in{2

(

.
For any perfect matching M between u´1 t0u and u´1 t1u (M is a bijection between these two sets),
the function Γpu, pM,aqq is a balanced string v P t0, 1unn{2 defined as follows:

For every k P rn{2s, vik “ uik ‘ ak and vMpikq “ uMpikq ‘ ak.

In simple words, for every matching between the 0-coordinates and 1-coordinates of u and a string
a P t0, 1un{2, we get a new balanced string v by flipping the endpoints of a subset of matching
edges. Here the subset of matching edges whose endpoints are flipped is given by the string a.
Following is an example for n “ 8.

Example. Let u “ 10101010. Here u´1 t0u “ t2, 4, 6, 8u and u´1 t1u “ t1, 3, 5, 7u. Let M “

pp2, 3q, p6, 1q, p4, 5q, p8, 7qq and a “ 0110. Then Γpu, pM,aqq “ v “ 00110110 (endpoints of the 2nd

matching edge p6, 1q and the 3rd matching edge p4, 5q are flipped).

Next, we define a weighted graph on all the balanced strings with weights representing the
probability of going from one balanced string to another for a random matching M and a random
string a (using the map Γ).
Let n1 “ |

`

n
n{2

˘

| denote the cardinality of the set of balanced strings t0, 1unn{2. Let G denote a

weighted complete graph on n1 vertices, where the vertices denote strings in t0, 1unn{2. For any two

distinct balanced strings u,v P t0, 1unn{2, the weight of the edge pu,vq, denoted by wpu,vq is:

wpu,vq :“ Pr
M,a

rΓpu, pM,aqq “ vs,

where the probability is over the choice of a random perfect labeled matching M between u´1 t0u

and u´1 t1u, and a uniformly random string a P t0, 1un{2. For every balanced string u P t0, 1unn{2,

we will denote by W puq the distribution on t0, 1unn{2 where the probability of sampling v is equal

to wpu,vq. Let W P Rn1ˆn1

denote the weighted adjacency matrix of G, i.e.

W ru,vs “ wpu,vq, for all u,v P t0, 1unn{2

We are now ready to state the main technical lemma of our proof. It roughly says that if we sample
a random vertex (which is a random balanced string) and its neighbour in the above-mentioned
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graph, then the two balanced strings behave “almost like pairwise-independent” points. In other
words, the above-mentioned graph is a good sampler for the balanced slice t0, 1unn{2.

Lemma 3.2 (Main Lemma). There exists a constant ε ą 0 for which the following holds.
Let G and W be as mentioned above and let S Ď t0, 1unn{2 be an arbitrary subset of vertices

with |S| ě 4´d ¨
`

n
n{2

˘

. Let ρ denote the density of the set S. Then,

Pr
x„Un,n{2

y„W pxq

rx P S and y P Ss ď ρ2 ¨

ˆ

1 `
1

nε

˙

.

We will give two proofs for Lemma 3.2, for two regimes of the degree d:

1. For degree d ď C log n for some absolute constant C ą 0, we give a simple argument using the
spectral expansion properties of Cayley graphs and the expander mixing lemma. We prove
this in Section 3.1.

2. For degree d ď nγ for some absolute constant γ ą 0, we rely on the spectrum of Johnson as-
sociation schemes and use hypercontractivity for slice functions. We prove this in Section 3.2.

We will also need a lower bound on the probability in Lemma 3.2. This will hold for all degree
d. Combining the upper and lower bounds (i.e., Lemma 3.2 and Lemma 3.3 gives the final bound:
see Section 3.3.)

Lemma 3.3 (The lower bound). Let G be the graph as mentioned above and fix a degree parameter
d P N. Let P pxq : t0, 1unn{2 Ñ R be a non-zero polynomial on the balanced slice t0, 1unn{2 with

degpP q ď d. If S Ď t0, 1unn{2 denote the set of non-zeroes of P pxq, then,

Pr
x„Un,n{2

y„W pxq

rx P S and y P Ss ě
|S|
`

n
n{2

˘ ¨
1

2d
.

Proof of Lemma 3.3. Note that it is sufficient to show that

Pr
y„W pxq

ry P S |x P Ss ě
1

2d
, for all x P S.

Fix an arbitrary point u P S and fix an arbitrary matching M between u´1 t0u and u´1 t1u. We
will show that for 1{2d-fraction of a P t0, 1un{2, the string Γpu, pM,aqq P S.

Define the polynomial Qpz1, . . . , zn{2q :“ P pΓpu, pM, zqqq. Note that degpQq ď degpP q ď d and
Qp0q “ P puq ‰ 0. Now using the standard ODLSZ lemma (Theorem 2.1) on Qpzq, we get,

Pr
z„t0,1un{2

rQpzq ‰ 0s ě
1

2d
ñ Pr

a„t0,1un{2
rΓpu, pM,aqq P Ss ě

1

2d

10



Since the above lower bound holds for every matching M between u´1 t1u and u´1 t0u, we have,

Pr
M,a

rΓpu, pM,aqq P Ss ě
1

2d

Since the above lower bound holds for arbitrary choice of u P S, this completes the proof of
Lemma 3.3.

■

Next, we observe that the random process mentioned above is “Sn-invariant”
4, i.e. the probabil-

ities do not change even if we simultaneously permute the coordinates of u and v (using the same
permutation for both of them).

Observation 3.4. For any u,v P t0, 1unn{2, the weight wpu,vq depends only on5 ∆pu,vq. We have,

wpu,vq “
∆!pn{2 ´ ∆q!

2n{2 ¨ pn{2q!
“

1

2n{2 ¨
`

n{2
∆

˘
, where 2∆ “ ∆pu,vq P r0, ns

To see the above probability, observe that the 1
2n{2 factor corresponds to sampling the right a and

the ∆!pn{2´∆q!
pn{2q! factor corresponds to picking a matching M that results in the output v).

Note that the above observation in particular implies that the weighted adjacency matrix W is a
real symmetric matrix, and thus has real eigenvalues. Both of our proofs for Lemma 3.2 will be
based on upper bounding the eigenvalues of W .

3.1 Simple Proof Using Cayley Graphs

In this section, we prove a version of Lemma 3.2 using a simple and (mostly) self-contained argu-
ment. This version holds for degrees d ď C log n for some absolute constant C.

Let 1 “ µ1 ě µ2 ě ¨ ¨ ¨ ě µn1 be the eigenvalues of W and let µpW q denote the second largest
eigenvalue in absolute value, i.e. µpW q :“ maxp|µ2|, |µn1 |q. A small value of µpW q suggests that
the random walk represented by W is “expanding” (see Lemma 2.5). The main lemma of this
subsection is the following, which shows that µpW q is small, i.e. W is a good expander. In the rest
of the subsection, let m “ n{2.

Lemma 3.5 (W is a good expander). Let W denote the n1 ˆ n1 matrix as described before. Then,

µpW q ď O
ˆ

log n
?
n

˙

.

We now prove Lemma 3.5, i.e., we show that W is a good expander. The idea of the proof is to
show that one can turn W into a (weighted) Cayley graph by adding additional edges and vertices
and deduce that the original graph is an expander by using the expansion of the Cayley graph. In

4Sn is the group of permutations on n elements.
5Recall that ∆p¨, ¨q represents the Hamming distance.
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particular, we will show that W is an induced subgraph of a Cayley graph and use the interlacing
of eigenvalues to prove the expansion.

Proof of Lemma 3.5. For the proof, we will assume thatm is even; the odd case is handled similarly.
Let t0, 1unodd and t0, 1uneven denote the sets of points in t0, 1un that are of odd Hamming weight and
even Hamming weight respectively. We will now define the weighted Cayley graph.

Let V 1 “ t0, 1uneven (note that t0, 1unn{2 Ď V 1 as n is assumed to be even). Note that V 1 is an

Abelian group with addition defined by performing coordinate sums modulo 2 (in particular, we
may identify {0,1} with F2). We shall define a weighted Cayley graph W 1 over vertices V 1 by
specifying its generators (and their weights) as follows. The set of generators is S “ t0, 1uneven and
a generator x P S has weight

wpxq “
1

2m ¨
`

m
∆

˘ , where |x| “ 2∆ and 0 ď ∆ ď m

With the above definition for V 1 and W 1, we note that the induced subgraph of W 1 when restricted
to the balanced slice t0, 1unn{2 Ď V 1, is identical to W . Hence, by applying the eigenvalue interlacing
theorem, we have the following.

Claim 3.6 (Eigenvalue interlacing, see e.g. [HJ91]). Let µ1
1 ě µ1

2 ě ¨ ¨ ¨ ě µ1
|V 1|

be the eigenvalues

of W 1. Then µ2 ď µ1
2 and µ1

|V 1|
ď µn1. Hence, µpW q ď maxp|µ1

2|, |µ1
|V 1|

|q.

The above claim allows us to bound µpW q by bounding the absolute values of the eigenvalues of
W 1 (except the largest). To do this, we will first fix an eigenbasis for W 1. The characteristic vectors
of the first pn ´ 1q variables forms such an eigenbasis (because if x P V 1, then xn can be expressed
as a F2-linear combination of x1, . . . , xn´1). That is, for A Ď rn ´ 1s, the characteristic vector
χA P R2n´1

is defined as χApxq :“ p´1q
ř

iPA xi for x P V 1. The corresponding eigenvalue of χA is
denoted by µ1

A (with a slight abuse of notation), and by Lemma 2.4, is equal to

µ1
A “

ÿ

yPS
wpyqχApyq.

It will be convenient to normalize the weights of the generators in S to make it a probability distribu-
tion. More formally, let D be the probability distribution over S where the probability of sampling
a point x P S is equal to wpxq{

ř

yPS wpyq. Thus, µ1
H “

ř

yPS wpyq and µ1
A{µ1

H “ Ex„DrχApxqs.

We will now show that 0 ă µ1
H ď Op

?
mq and |Ex„DrχApxqs| “ |µ1

A{µ1
H| ď O

`

logm
m

˘

for all non-

empty A Ď r2m ´ 1s. This would in turn give that µpW q ď maxA‰Hp|µ1
A|q ď O

ˆ

?
m logm
m

˙

“

Oplogm{
?
mq, finishing the proof of Lemma 3.5.

The proof of Claim 3.7 follows from a simple counting argument and can be found in Appendix A.1.

Claim 3.7. 0 ă µ1
H ď Op

?
mq.
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It remains to show that |Ex„DrχApxqs| ď O
`

logm
m

˘

for all non-empty A Ď r2m ´ 1s. Note that
the distribution D has some symmetry in the sense that all the points of a given Hamming weight
have the same probability. Furthermore, two given points, one of weight 2∆ and the other of
weight p2m ´ 2∆q also have the same probability mass (for arbitrary 0 ď ∆ ď m). This leads to
Ex„DrχApxqs being equal to 0 if |A| “ 1 or 2m ´ 1, and hence it suffices to focus on the regime
2 ď |A| ď 2m ´ 2.

We show the following concentration inequality for the distribution D. The proof of Claim 3.8 can
be found in Appendix A.1.

Claim 3.8. Prx„Dr||x| ´ m| ą
?
50m logms ď Op1{m2q.

Assuming Claim 3.8, it suffices to show that Ex„DrχApxq | |x| P m ˘
?
50m logms ď O

`

logm
m

˘

to

conclude that Ex„DrχApxqs ď O
`

logm
m

˘

. We will show that this holds even conditioned on |x| “ 2∆
for every ∆ P pm ˘

?
50m logmq{2. However, recall that D is uniform when restricted to t0, 1u2m2∆ .

Therefore, we can equivalently upper bound the quantity |ExPt0,1u2m2∆
rχApxqs| to conclude the proof.

Now, we note that ExPt0,1u2m2∆
rχApxqs “ E

B„pr2ms

|A| q
rχBpcqs, where c is an arbitrary point in t0, 1u2m2∆

(we will fix it to be 02m´2∆12∆). Hence, it suffices to show that

ˇ

ˇ

ˇ

ˇ

E
B„pr2ms

k q
rχBpcqs

ˇ

ˇ

ˇ

ˇ

ď O
ˆ

logm

m

˙

, (1)

for every 2 ď k ď p2m ´ 2q (since we assumed that 2 ď |A| ď 2m ´ 2). We may further assume
that k ď m without loss of generality, as χBpcq “ χBpcq.

To help with the analysis, we will choose B „
`

r2ms

k

˘

by first choosing a subset C of r2ms of size
pk ´ 2q (which is non-negative) uniformly at random and then choosing two elements b1 ‰ b2 from
C “ r2mszC uniformly at random.

For a subset C Ď r2ms, we will use the notation wtpCq to denote the number of 1’s in c when
restricted to the coordinates indexed by C. Let p :“ wtpr2msq{p2mq denote the fractional Hamming
weight of c. We say that a subset C Ď r2ms is good, if

ˇ

ˇ|C| ´ 2wtpCq
ˇ

ˇ ď
?
2000 logm. We claim

that Pr
C„pr2ms

k´2q
rC is not goods ď Op1{m2q. This essentially follows from standard tail bounds for

the hypergeometric distribution but needs some care to handle small k. We divide this analysis
into two cases.

• Case 1: k ď
?
50m logm. We note that |C| “ 2m´ k ` 2 P 2m˘

?
50m logm, and similarly

wtpCq P wtpr2msq ˘
?
50m logm Ď m ˘ 2

?
50m logm. Using these bounds, it follows that

ˇ

ˇ|C| ´ 2wtpCq
ˇ

ˇ ď
?
2000 logm for sufficiently large m (for every choice of C P

`

r2ms

k´2

˘

). Hence
all choices of C are good in this case.

• Case 2: k ą
?
50m logm. We note that wtpCq is distributed according to a hypergeometric

distribution — it corresponds to the number of successes in k ´ 2 draws with replacement
from a population of 2m total states and wtpr2msq “ 2d success states. Using a standard

tail bound [Hoe94], we obtain that Pr
C„pr2ms

k´2q

“

|
wtpCq

k´2 ´ p| ą

b

4 log k
k

‰

“ Op1{k4q “ Op1{m2q.

Using
ˇ

ˇp ´ 1
2

ˇ

ˇ ď

b

50 logm
m , we thus get that ||C| ´ 2wtpCq| ď 4

?
50m logm with probability
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at least 1 ´ Op1{m2q. Because 2m “ |C| ` C and 2d “ wtpCq ` wtpCq, with probability at
least 1 ´ Op1{m2q, we have ||C| ´ 2wtpCq| ď 6

?
50m logm, i.e., C is good.

We now show that conditioned on C being good, the expectation of χBpcq is upper bounded by
O
`

logm
m

˘

in absolute value. This would then prove (1). For ease of notation, let n0 “ |C| “

2m´k`2 ě m and d0 “ wtpCq P n0
2 ˘Θp

?
n0 log n0q (since C is good). We now note that χBpcq “

χCpcq ¨ χtb1,b2upcq, so it suffices to bound |Eb1,b2rp´1qcb1`cb2 s|. The idea now is that cb1 and cb2
almost behave like two independent draws, so the expectation is roughly the square of |Ebrp´1qcbs|

for a uniformly random coordinate b P C, which is equal to
ˇ

ˇ

n0´2d0
n0

ˇ

ˇ ď Op

b

logn0

n0
q ď Op

b

logm
m q as

n0 ě m. More precisely, we have the following:

| E
b1,b2

rp´1qcb1`cb2 s| “
|
`

d0
2

˘

`
`

n0´d0
2

˘

´ d0pn0 ´ d0q|
`

n0

2

˘

“
|pn0 ´ 2d0q2 ´ n0|

n0pn0 ´ 1q

ď O
ˆ

log n0

n0

˙

ď O
ˆ

log n

n

˙

. (as d0 P n0{2 ˘ Θp
?
n0 log n0q)

This finishes the proof of Lemma 3.5. ■

Proof of Lemma 3.2 for d ď C log n. We use Lemma 3.5 to prove an upper bound for Lemma 3.2
that holds for all d ď C log n for an absolute constant C ą 0. Using the expander mixing lemma
(Lemma 2.5), we obtain

Pr
x„Un,n{2,y„Npxq

rx P S and y P Ss ď ρ2 ` ρ ¨ O
ˆ

log n
?
n

˙

,

where S denotes the non-zeroes of P in t0, 1unn{2 and ρ “ |S|{
`

n
n{2

˘

. Thus assuming d ď C log n for

small enough constant C and using ρ ě 4´d (Lemma 1.2), we get that the above probability is at
most ρ2p1 ` 1{nεq for sufficiently small constant ε. Hence, this finishes the proof of Lemma 3.2 in
the regime d ď C log n.

■

3.2 Proof via Johnson Association Schemes

In this section, we prove a stronger version of Lemma 3.2, i.e. we will give a tighter upper bound.
This will hold for all d ď nγ for some absolute constant γ ą 0. In this subsection, we will always as-
sume that n is divisible by 2. We will first give some preliminaries on Johnson association schemes
and functions on the balanced slice.

3.2.1 Preliminaries for Johnson Association Schemes

We now discuss that the matrix W has some useful properties. Recall n1 “
`

n
n{2

˘

. Consider the set

of n1 ˆ n1 dimensional matrices satisfying the following property: For every entry pu,vq, the entry

14



only depends on the Hamming distance ∆pu,vq as mentioned in Observation 3.4. The set of all
such matrices forms an algebra known as Bose-Mesner algebra of the pn, n{2q Johnson association
scheme. Note that the matrices in this algebra are invariant under the action of the symmetric
group Sn on the coordinates, i.e., if we apply a permutation π P Sn on the coordinates of the rows
and columns simultaneously, the matrix remains invariant. Filmus [Fil16] showed that there exist
vector spaces that form orthogonal eigenspaces for matrices in Bose-Mesner algebra of the pn, n{2q

Johnson association scheme with certain useful properties.

We equip the space of functions on the balanced slice t0, 1unn{2 with an inner product. We
consider the following inner product on functions on the balanced slice: For any two functions
f, g : t0, 1unn{2 Ñ R

xf, gy “ Ex„Un,n{2
rfpxq ¨ gpxqs

The pth norm of a function f : t0, 1unn{2 Ñ R is defined as follows:

∥f∥p “ Ex„Un,n{2
r|fpxq|ps1{p “

1

n1

¨

˝

ÿ

xPt0,1un
n{2

|fpxq|p

˛

‚

1{p

Let us define a particular function on the balanced slice t0, 1unn{2. For every t P t0, 1, . . . , n{2u,

let ftpxq : t0, 1unn{2 Ñ R be the following function: For t “ 0, ft “ 1 and for t ě 1,

ftpx1, . . . , xnq “ px1 ´ x2q ¨ px3 ´ x4q ¨ ¨ ¨ px2t´1 ´ x2tq (2)

We are going to interpret ftpxq as a vector, i.e. for every α P t0, 1unn{2, the αth entry of the vector

is ftpαq. We will use the following result from [Fil16].

Lemma 3.9. [Fil16, Lemma 18]. There exists orthogonal6 vector spaces Vn,0, . . . ,Vn,n{2 for which
the following holds. Let W be any matrix in the Bose-Mesner algebra for the pn, n{2q Johnson
association scheme. Then,

1. The spaces Vn,0, . . . ,Vn,n{2 are orthogonal eigenspaces for the matrix W with corresponding
eigenvalues (not necessarily distinct) λ0, λ1, . . . , λn{2.

2. For every integer t P t0, 1, . . . , n{2u, the function ftpxq, as described in Equation (2) lies in
Vn,t. In other words, ft is an eigenvector of W in the tth eigenspace with eigenvalue λt.

For a function f : t0, 1unn{2 Ñ R and 0 ď t ď n{2, let f“t denote the component of f in the tth

eigenspace Vn,t (see Lemma 3.9). We now define the following noise operator for functions on the
slice.

6The orthogonality is with respect to the inner product defined in the previous paragraph.
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Definition 3.10 (Noise operator for functions on slice). (See [FI19, Section 2]). For a parameter
ρ P p0, 1s, the noise operator Tρ maps functions on the slice t0, 1unn{2 to functions on the slice

t0, 1unn{2, defined as:

Tρf “

n{2
ÿ

t“0

ρtp1´ t´1
n q f“t.

Now we state a hypercontractive inequality for the noise operator Tρ. Lee and Yau [LY98] proved
a log-Sobolev inequality which combined with a result of Diaconnis and Saloff-Coste [DS96] implies
the following hypercontractive inequality. The following lemma is a simplified form of the more
general inequality. For more details, refer to [FI19, Section 2] and [Fil16, Section 2].

Lemma 3.11 (Hypercontractive inequality using log-Sobolev inequality). Fix any multilinear
polynomial f on the balanced slice t0, 1unn{2. Then there exists a constant c such that for every

1 ď p ď q ď 8 with q´1
p´1 ď exp pc log 1{ρq,

∥Tρf∥q ď ∥f∥p.

Remark 3.12. In [Fil16] and [FI19], the above lemma is stated in a slightly different way, so we
take a moment to clarify that here. As mentioned in [FI19, Page 2] (see the line after Equation (2)),
the noise operator Tρ is equivalent to the expected value after applying random Popn´1

2 logp1{ρqq

transpositions. Using the comment in [Fil16] (after Definition 26), Tρ is equivalent to Hgpρq, where

H¨ is the Heat operator and gpρq “ n´1
2 logp1{ρq. We get Lemma 3.11 by using [Fil16, Lemma 27]

(the reader should be careful that the ρ in that lemma is the log Sobolev constant and is different
from the ρ in Lemma 3.11).

3.2.2 Proof of the Sampling Guarantee

One of the key steps in our proof of Lemma 3.2 will be Lemma 3.13 which gives an upper bound on
the eigenvalues of the matrix W . It says that for small t, the eigenvalue λt is quite small (roughly
1{nt) and for larger t, the eigenvalue is still exponentially small (roughly 1{2t). To upper bound the
eigenvalues, the idea is to choose a suitable eigenvector and argue about its non-zero coordinates. In
particular, we will work with the eigenvector ftpxq as stated in Equation (2) and Lemma 3.9.

Lemma 3.13. Let λ0, λ1, . . . , λn{2 denote the eigenvalues of W and let τ :“ nδ for a sufficiently
small constant δ ą 0. Then,

• For 1 ď t ď τ , λt ď 1{nΩptq

• For t ą τ , λt ď 1{2n
Ωp1q

.

Before going into the proof of Lemma 3.13, we will define a property on bipartite matching. For a
matching M, if pi, jq P M, then we will use the notation Mpiq “ j and Mpjq “ i.
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Definition 3.14 (Good and self-good matching). Consider a complete bipartite graph Kn{2,n{2 on
vertex set pL

Ť

Rq, where L “ t1, 3, . . . , n ´ 1u and R “ t2, 4, . . . , nu. We will refer to a matching
M between L and R as t-good if the following holds:

Mp2i ´ 1q P t2, 4, . . . , 2tu or Mp2iq P t1, 3, . . . , 2t ´ 1u , for all i P rts

We will call a good matching M a t-self good matching if for every subset T Ď rts of size t{2, there
exists i P T such that

Mp2i ´ 1q “ 2i

We will simply refer to matchings that are not t-good as t-bad matchings. We will refer to match-
ings that are t-good but not t-self good as t non-self good matchings. In our proof of Lemma 3.13,
it will be useful to have an upper bound on the probability that a random matching M is a t-good
matching or a t-self good matching. We upper bound these probabilities in the following claim.
The proof is a straightforward counting argument with standard binomial estimations. We omit
the proof here and it can be found in Appendix A.2.

Claim 3.15 (Upper bound on probability of (self) good matchings). Consider the complete bipartite
graph Kn{2,n{2 on L

Ť

R where L “ t1, 3, . . . , n ´ 1u and R “ t2, 4, . . . , nu. Let τ “ nδ for a
sufficiently small δ ą 0. Then,

Pr
M

rM is a t-good matchings ď
1

nΩptq
, for all t ď τ,

where the above probability is over the choice of a uniformly random matching M. Also,

Pr
M

rM is a t-self good matchings ď
1

nΩptq
, for all t ą τ,

where the above probability is over the choice of a uniformly random matching M.

Now we have all the essentials with us to prove the Lemma 3.13. As mentioned earlier, the
idea would be to fix a non-zero coordinate of the eigenvector ftpxq and consider that coordinate in
Wft.

Proof of Lemma 3.13. Recall that the rows and columns of the matrix W are indexed by points of
t0, 1unn{2. Fix any particular t P t1, . . . , n{2u. We know that ft is an eigenvector of the matrix M

with eigenvalue λt, i.e. for every u P t0, 1unn{2, we have,

pWftqrus “ λt ¨ ftpuq ñ Ev„W puqrftpvqs “ λt ¨ ftpuq

Fix any u for which ftpuq “ 1. For convenience, let u “ 1010 . . . 10. Then we have,

λt “ Ev„W puqrftpvqs
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We make the following observation about bad matchings.

Observation 3.16. Fix M to be any t-bad matching. For simplicity in notation, assume that
Mp1q R t2, 4, . . . , 2tu and Mp2q R t1, 3, . . . , 2t ´ 1u. Let Mp2q “ p2j ´ 1q for some j ą t. Then we
have v1 “ u1 ‘ a1 and v2 “ u2 ‘ aj. Since a1 and aj are mutually independent, this implies that
v1 and v2 are mutually independent too. This implies that the expected value of pv1 ´ v2q over the
random choice of a is 0 (conditioned on a bad matching M). Using the independence of bits in a,
we have,

Ev„W puqrftpvq |M is t-bads “ Epa1,ajq rpv1 ´ v2qs ¨ Ea2,...,an{2zaj

«

t
ź

ką1

pv2k´1 ´ v2kq

ff

ñ Ev„W puqrftpvq |M is t-bads “ 0

This gives us the following:

λt “ Ev„W puqrftpvq |M is t-goods ¨ Pr
M

rM is t-goods ` Ev„W puqrftpvq |M is t-bads ¨ Pr
M

rM is t-bads

From Observation 3.16, we know that the expected value of ftpvq for v P Npuq conditioned on a
bad matching M is 0. This gives us

λt “ Ev„W puqrfdpvq |M is t-goods ¨ Pr
M

rM is t-goods

Case 1 - t ď τ : Note that the expectation is over a random choice of a „ t0, 1un{2. For any
v P t0, 1unn{2, ftpvq P t´1, 0, 1u. In other words, the absolute value of the expectation is at most 1.
Using this, we now have,

λt ď |Ev„W puqrftpvq |M is t-goods| ¨ Pr
M

rM is t-goods ď Pr
M

rM is t-goods

For t ď τ , Claim 3.15 implies that λt ď 1{nΩptq. This shows the first item of Lemma 3.13.

Case 2 - t ą τ : We make the following observation about non-self good matchings.

Observation 3.17. Fix a t non-self good matching M. By definition of t-self good matchings, we
know that there exists a set T Ď rts of size t{2 such that for every i P T , Mp2i ´ 1q ‰ 2i. Assume
without loss of generality that T “ rt{2s and Mp2iq “ p2ji ´1q for i P T . Note that for every i P T ,
if ai ‰ aji, then ftpxq “ 0. In other words, for ft to be non-zero, it is necessary that for every
i P rt{2s, ai “ aji. This implies that ft is non-zero for at most 1

2t{4 choices of a.

Using Observation 3.17, we get the following upper bound on the expected value conditioned on a
t non-self good matching M:

Ev„W puqrftpvq |M is t non-self goods ď |Ev„W puqrftpvq |M is t non-self goods| ď
1

2t{4
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Thus finally we have,

λt “ Ev„W puqrftpvq |M is t-goods ¨ Pr
M

rM is t-goods

“ Ev„W puqrftpvq |M is t-self goods ¨ Pr
M

rM is t-self goods

`Ev„W puqrftpvq |M is t non-self goods ¨ Pr
M

rM is t non-self goods

ď Pr
M

rM is t-self goods ` Ev„W puqrftpvq |M is t non-self goods

ñ λt ď
1

2t{4
`

1

nΩptq
ď

1

2nΩp1q

This shows the second item of Lemma 3.13 and completes the proof of Lemma 3.13.

■

We are now ready to prove our main lemma (Lemma 3.2) in the setting when d ď nκ. We recall
the statement below.

Lemma 3.2 (Main Lemma). There exists a constant ε ą 0 for which the following holds. Let
G and W be as mentioned above and let S Ď t0, 1unn{2 be an arbitrary subset of vertices with

|S| ě 4´d ¨
`

n
n{2

˘

. Let ρ denote the density of the set S. Then,

Pr
x„Un,n{2

y„W pxq

rx P S and y P Ss ď ρ2 ¨

ˆ

1 `
1

nε

˙

.

Proof of Lemma 3.2 for d ď nγ. Let 1S denote the n1-dimensional characteristic vector for the sub-
set S. Then,

Pr
x„Un,n{2

y„W pxq

rx P S and y P Ss “ x1S , W1Sy,

where xf, gy “ Ex„Un,n{2
rfpxqgpxqs. Let Vn,0, . . . ,Vn,n{2 be the orthogonal basis for the space of

functions on t0, 1unn{2 as stated in Lemma 3.9. Let 1“t
S denote the component of 1S in the tth

eigenspace Vn,t. We have,

W1S “

n{2`1
ÿ

t“0

W1“t
S “

n{2`1
ÿ

t“0

λt1
“t
S ,

where for the final equality we used the fact that 1“t
S is an eigenvector for W (first item of

Lemma 3.9). Using this, we have,

x1S , W1Sy “

C

n{2`1
ÿ

t“0

1“t
S ,

n{2`1
ÿ

t“0

λt1
“t
S

G

“

n{2`1
ÿ

t“0

λt∥1“t
S ∥22,

where for the final equality we used the orthogonality of Vn,t’s.
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Using the orthogonality Vn,t’s, we have,

∥Tρ1S∥22 “

n{2`1
ÿ

t“0

ρ2tp1´ t´1
n q ∥1“t

S ∥22

Let τ :“ nδ for small enough δ ą 0 such that Lemma 3.13 holds. If we have ρ “ 1{nδ1

for a small
enough δ1 depending on δ, then for t ď τ , we have,

λt ď ρ2t ď ρ2tp1´ t´1
n q

This implies that for t ď τ , we have,

τ
ÿ

t“0

λt∥1“t
S ∥22 ď

τ
ÿ

t“0

ρ2tp1´ t´1
n q ∥1“t

S ∥22 ď ∥Tρ1S∥22 (3)

For t ą τ , we have,

n{2`1
ÿ

t“τ`1

λt∥1“t
S ∥22 ď

n{2`1
ÿ

t“τ

1

2nΩp1q
∥1“t

S ∥22 ď n ¨
1

2nΩp1q
, (4)

where we upper bounded ∥1“t
S ∥22 by 1. Combining these two together, we get,

n{2`1
ÿ

t“0

λt∥1“t
S ∥22 ď ∥Tρ1S∥22 `

n

2nΩp1q

Now applying the hypercontractivity theorem for the noise operator Tρ, we get,

∥Tρ1S∥2 ď ∥1S∥p,

where 1{pp ´ 1q ď exp pc log 1{ρq “ exp pcδ1 log nq. We also have that for any p, the norm ∥1S∥p is
equal to p|S|{n1q1{p. Using this, we get,

∥Tρ1S∥22 ď

ˆ

|S|

n1

˙2{p

“

ˆ

|S|

n1

˙2p1´1{nκq

,

for some constant κ depending on the constant c from the hypercontractive inequality Lemma 3.11
and ρ. Plugging this back in, we have,

Pr
x„Un,n{2

y„W pxq

rx P S and y P Ss “ x1S , W1Sy “

n{2`1
ÿ

t“0

λt∥1“t
S ∥22

ď

ˆ

|S|

n1

˙2p1´1{nκq

`
1

2nΩp1q
“

ˆ

|S|

n1

˙2

¨

˜

ˆ

|S|

n1

˙´2{nκ

`
pn1{|S|q2

2nΩp1q

¸

.

From the hypothesis of Lemma 3.2, we know that |S|{n1 ě 4´d. Using this in the parenthetical
term above, we get

Pr
x„Un,n{2

y„W pxq

rx P S and y P Ss ď

ˆ

|S|

n1

˙2

¨

˜

4Opd{nκq `
4Opdq

2nΩp1q

¸

ď

ˆ

|S|

n1

˙2

¨

ˆ

1 `
1

nε

˙

.

for a small enough absolute constant ε ą 0 as long as d ď nγ for a small enough absolute constant
γ ą 0. This concludes the proof of Lemma 3.2. ■
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3.3 Putting Everything Together

We now use the above bounds to show that over the balanced slice (the set of points with Hamming
weight n{2), we have the optimal distance lemma for low-degree polynomials. The main result of
this section is the following lemma.

Theorem 3.18 (Distance lemma over the balanced slice). There exists an absolute constant
ε ą 0 so that the following holds. Fix an arbitrary Abelian group G and fix a degree parameter
d P N where d ď nε. For every even natural number n, and for every non-zero degree-d
polynomial P pxq P Pdpn, n{2, Gq,

Pr
x„Un,n{2

rP pxq ‰ 0s ě
1

2d
¨

ˆ

1 ´
1

nΩp1q

˙

Proof of Theorem 3.18. Letting S Ď t0, 1unn{2 denote the set of points on the balanced slice on
which P evaluates to a non-zero value. From Lemma 1.2, the set S satisfies the density lower
required in Lemma 3.2. Combining Lemma 3.2 and Lemma 3.3, we obtain

|S|
`

n
n{2

˘ ¨
1

2d
ď Pr

x„Un,n{2

y„W pxq

rx P S and y P Ss ď

˜

|S|
`

n
n{2

˘

¸2

¨

ˆ

1 `
1

nε

˙

,

where ε is a sufficiently small constant. Hence, |S|{
`

n
n{2

˘

ě 1
2d

¨

´

1 ´ 1
nΩp1q

¯

. ■

4 Arbitrary Slices

In this section we prove a distance lemma for slices over arbitrary Abelian groups G. As discussed
in the proof overview, the proof has three key steps:

1. First, we prove a distance lemma over cyclic groups of prime power order for some fixed set
of slices, which we refer to as “good” slices. We prove this in Lemma 4.6.

2. Secondly, we prove a distance lemma over cyclic groups of prime power order for any slice by
reducing it to one of the good slices. We prove this in Lemma 4.8.

3. In the end, we show that any Abelian group can be assumed to be a finitely generated Abelian
group. To prove the distance lemma for a finitely generated Abelian group, it suffices to have
the distance lemma over cyclic groups of prime power order, which we prove in Lemma 4.1.

We will start by proving a distance lemma for slices over cyclic groups of prime power order.

4.1 Cyclic Groups of Prime Power Order

In this subsection we will prove the distance lemma for slices over Zpℓ for some prime p and natural
number ℓ. The main result of this subsection is the following lemma.
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Lemma 4.1 (Distance lemma for cyclic groups). There exists an absolute constant ε ą 0 so
that the following holds. Fix a cyclic group Zq where q “ pℓ for some prime p and a degree
parameter d P N. For all natural numbers n and k such that 1 ` d ď kε and k ď n{2, the
following is true.
For a non-zero degree-d polynomial P : t0, 1unk Ñ Zq,

Pr
x„Un,k

rP pxq ‰ 0s ě αd

ˆ

1 ´
1

kΩp1q

˙

, where α :“
k

n
.

We will start with the definition of good slices. The idea is that these slices admit a nice basis
which can be used to reduce the problem from a good slice to the balanced slice over a smaller
dimensional cube, which we have proved in Theorem 3.18.

Definition 4.2 (Good slices). Fix a prime p and a degree parameter d P N. An integer k ě d is
said to be pd, pq-good if the p-ary expansion of k agrees with that of d in all the digits up to the
leading digit of d, and is greater than equal to d in the leading digit. More formally, if k “

řm
j“0 ajp

j

and d “
řℓ

j“0 bjp
j with aj , bj P t0, . . . , p ´ 1u, with bℓ ą 0, then aj “ bj for all j ă ℓ and aℓ ě bℓ.

For a degree parameter d, letHd denote the set of homogeneous monomials in tx1, . . . , xnu, i.e.

Hd “

#

ź

iPT

xi

ˇ

ˇ

ˇ

ˇ

ˇ

T Ď rns, |T | “ d

+

Since every xi P t0, 1u, we only work with multilinear monomials. So for convenience, we will
identify monomials with sets and vice-versa and for a set T Ď rns, let xT :“

ś

iPT xi.

We will now show that if k is pd, pq-good, then the set of degree-d homogeneous multilinear mono-
mials Hd form a ‘basis’ for degree-d polynomials on the kth slice in the following sense.

Lemma 4.3. Let q be a power of prime p as above. Fix n, k, d such that d ď k ď n ´ d and
assume that k is pd, pq-good. Then, any function in Pdpn, k,Zqq can be written uniquely as a linear
combination of the monomials in Hd.

To prove the above lemma, we will first show that there are at least qpndq distinct degree-d polynomial
functions on the slice, and then that the monomials in Hd span all these functions. Since |Hd| is
exactly

`

n
d

˘

, these two statements immediately implies Lemma 4.3.

We start with the lower bound on |Pdpn, k,Zqq|. The proof is implicit in the work of Wilson [Wil90].
For the sake of completeness, we give a proof in Appendix A.3.

Lemma 4.4 (Number of degree-d polynomials on the slice). [Wil90]. For every degree parameter
d P N and for every slice parameter k such that d ď mintk, n ´ ku, the number of distinct degree-d

polynomial functions on t0, 1unk is at least qpndq.

We now show that Hd is a spanning set for Pdpn, k,Zqq, which is our next claim. This proof is also
inspired by [Wil90] who proves this in the case when the polynomials have coefficients that are real
numbers.
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Claim 4.5. Fix a cyclic group Zq where q is a power of prime p. Fix a degree parameter d P N.
For all natural numbers n, k such that d ď k ď pn ´ dq and k is pd, pq-good, the following holds.
The set Hd of homogeneous degree-d monomials is a spanning set for Pdpn, k,Zqq.

Proof Idea: Every monomial of degree strictly less than d can be expressed as a linear combi-
nation of monomials of degree exactly equal to d using the fact that we are working over the slice
t0, 1unk . As we are working over a group of prime power order, we have to be careful about the
coefficients arising while expressing lower degree monomials using homogeneous monomials. We
will use that k is pd, pq-good and Lucas’s theorem (Lemma 2.2) in a crucial way to argue about the
coefficients.

Proof of Claim 4.5. Consider any monomial m of degree 0 ď i ă d. For simplicity in notations,
assume without loss of generality that m “ x1x2 ¨ ¨ ¨xi. Let Hd|m denote the subset of Hd which is
divisible by m, i.e.

Hd|m :“
␣

xT P Hd

ˇ

ˇ t1, . . . , iu Ă T
(

Since every monomial in Hd|m is divisible by m, it is easy to verify that over the slice t0, 1unk , the
following identity holds:

ÿ

xT PHd|m

xT “ m
ÿ

T 1Ďrnszris
|T 1|“d´i

xT
1

“ m ¨

ˆ

k ´ i

d ´ i

˙

To write the monomial m as a linear combination of monomials in Hd, we need the integer
`

k´i
d´i

˘

to be invertible in the ring Zq. This happens, exactly when
`

k´i
d´i

˘

is non-zero modulo the prime p.

Using Lucas’s theorem Lemma 2.2, we now argue that if the slice k is pd, pq-good, then for all
0 ď i ă d,

ˆ

k ´ i

d ´ i

˙

ı 0 mod p

Let r “ pℓ be the smallest power of p strictly greater than d. From Definition 4.2, we know that
k ” d mod pℓ. Fix any 0 ď i ď pd ´ 1q. If we represent pk ´ iq and pd ´ iq in p-ary representation,
then, we get,

pd ´ iq “

ℓ´1
ÿ

j“0

bjp
j `

m
ÿ

j“ℓ

0pj , pk ´ iq “

ℓ´1
ÿ

j“0

ajp
j `

m
ÿ

j“ℓ

ajp
j

One can verify that aj “ bj for all 0 ď j ď pℓ ´ 2q and aℓ´1 ě bℓ´1.
7 Thus by Lucas’s theorem

Lemma 2.2,
`

k´i
d´i

˘

ı 0 mod p. This concludes our proof that a degree strictly less than d monomial
can be expressed as a linear combination of monomials in Hd. ■

7This is true by assumption for i “ 0. The fact that it is also true when i ą 0 follows from elementary properties
of subtraction.
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Note that Lemma 4.4 and Claim 4.5 together imply Lemma 4.3.

Now we are ready to prove the following distance lemma for degree-d polynomials for good slices.
The proof will be by a random restriction, which allows us to reduce to the case of Theorem 3.18.
It random restriction sets a uniformly random set of pn ´ 2kq variables to 0 (i.e. we are reducing
from t0, 1unk to t0, 1u2kk ). The main step is to argue that a non-zero polynomial on the kth slice
continues to be a non-zero polynomial on the balanced slice (in a smaller dimension) with good
enough probability. For this, we use Hd as a basis Pdpn, k,Zqq for good slices.

Lemma 4.6 (Distance Lemma over good slices). There exists an absolute constant γ ą 0 so
that the following holds. Fix a cyclic group Zq where q is a power of a prime number p. Fix
a degree parameter d P N. For all natural numbers n, k such that 1 ` d ď kγ and k ď n{2
and k is pd, pq-good, the following holds.
For every non-zero degree-d polynomial P pxq P Pdpn, k,Zqq,

Pr
x„Un,k

rP pxq ‰ 0s ě αd

ˆ

1 ´
1

kΩp1q

˙

, where α :“
k

n

Proof of Lemma 4.6. We start by describing the random process to reduce the problem from kth

slice to the balanced slice in a smaller dimension cube.

Random process and the new polynomial Sample a random subset T Ď rns of size exactly

2k and set all the variables NOT in T to 0. Let P̃ py1, . . . , y2kq be the resulting polynomial in 2k
variables.8 Note that degpP̃ q ď degpP q “ d.
We will now argue that if P px1, . . . , xnq is a non-zero degree-d polynomial in Pdpn, k,Zqq, then
P̃ py1, . . . , y2kq is a non-zero degree-d polynomial in Pdp2k, k,Zqq with some good enough probability.

Claim 4.7. Let P pxq P Pdpn, k,Zqq be a non-zero polynomial. Then P̃ , as defined above, is a non-
zero polynomial over t0, 1u2kk with probability at least p2k{nqd ¨ p1 ´ pd2{2kqq over the randomness
of set T .

Proof of Claim 4.7. Firstly, represent the polynomial P px1, . . . , xnq as a unique linear combination
of monomials in Hd using Claim 4.5. Let m be a monomial in Hd which has a non-zero coefficient
in the polynomial P pxq. Assume without loss of generality that m “ x1x2 ¨ ¨ ¨xd. The probability
over the choice of T that t1, . . . , du Ă T is:

ˆ

n ´ d

2k ´ d

˙

{

ˆ

n

2k

˙

Since d ď 2k ď n, we have the following inequality:

ˆ

n ´ d

2k ´ d

˙

ě

ˆ

n

2k

˙

¨

ˆ

2k ´ d

n ´ d

˙d

8We identify the elements in T with r2ks in a canonical way.
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Using the inequality p1´ xqm ě p1´mxq and upper bounding pn´ dqd by nd, we get the following
inequality:

ˆ

n ´ d

2k ´ d

˙

ě

ˆ

2k

n

˙d

¨

ˆ

1 ´
d2

2k

˙

By Lemma 4.3, the probability of P̃ is a non-zero polynomial function over t0, 1u2kk is at least the
probability that the monomial m has non-zero coefficient in P̃ , and this is at least p2k{nqd ¨ p1 ´

pd2{2kqq. This finishes the proof of Claim 4.7. ■

Note that if P̃ pãq ‰ 0 for some ã P t0, 1u2kk , then P paq ‰ 0 where a is obtained from ã and fixing
the coordinates not in T to 0. It is also easy to see that for a random choice of T , if ã „ U2k,k,
then the corresponding a „ Un,k. Thus we get,

Pr
x„Un,k

rP pxq ‰ 0s ě Pr
T

rP̃ doesn’t vanish on t0, 1u2kk s

¨ Pr
y„U2k,k

rP̃ pyq ‰ 0 | P̃ doesn’t vanish on t0, 1u2kk s.

By using d ď kε
1

for sufficiently small ε1 and applying the distance lemma for the balanced slices
Theorem 3.18 on P̃ P Pdp2k, k, dq and Claim 4.7, we get,

Pr
x„Un,k

rP pxq ‰ 0s ě
1

2d

ˆ

1 ´
1

kΩp1q

˙

¨

ˆ

2k

n

˙d

¨

ˆ

1 ´
d2

2k

˙

ě

ˆ

k

n

˙dˆ

1 ´
1

kΩp1q

˙

.

This finishes the proof of Lemma 4.6. ■

Now we will show how to reduce a non-good slice to a good slice by randomly fixing some Opdq

many variables to 1. We will prove the following lemma.

Lemma 4.8 (Reducing any slice to a good slice). Fix a cyclic group Zq where q is a power of a
prime number p, a degree parameter d P N. Let n and k P rn1{3, n{2s be positive integers, and let
0 ď c ď 2d ď kε for a sufficiently small constant ε ą 0. Let β P p0, pk{nqdq be such that for every
non-zero polynomial Qpxq P Pdpn ´ c, k ´ c,Zqq, it holds that

Pr
x„Upn´cq,pk´cq

rQpxq ‰ 0s ě β.

Then for every non-zero polynomial P pxq P Pdpn, k,Zqq, it holds that

Pr
x„Un,k

rP pxq ‰ 0s ě β
´

1 ´
c

n0.1

¯

.

Together with Lemma 4.6, this completes the proof of Lemma 4.1 as shown below. We recall the
statement first.
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Lemma 4.1 (Distance lemma for cyclic groups). There exists an absolute constant ε ą 0 so
that the following holds. Fix a cyclic group Zq where q “ pℓ for some prime p and a degree
parameter d P N. For all natural numbers n and k such that 1 ` d ď kε and k ď n{2, the
following is true.
For a non-zero degree-d polynomial P : t0, 1unk Ñ Zq,

Pr
x„Un,k

rP pxq ‰ 0s ě αd

ˆ

1 ´
1

kΩp1q

˙

, where α :“
k

n
.

Proof of Lemma 4.1. We first argue that we can assume that k ě n1{3. Otherwise, Lemma 1.2
suffices to give us the desired bound. Indeed, if k ď n1{3, we have

`

n´2d
k´d

˘

`

n
k

˘ ě

ˆ

k ´ d

n

˙dˆn ´ 2k

n

˙d

ě

ˆ

k

n

˙dˆ

1 ´
d2

k

˙ˆ

1 ´
2kd

n

˙

ě

ˆ

k

n

˙dˆ

1 ´
1

kΩp1q

˙

.

Hence, for the rest of the proof, we will assume that k ď n1{3. We show below that it suffices to
show that for every slice k ą d, there exists c P r0, 2ds such that the slice pk ´ cq is pd, pq-good (see
Definition 4.2). Assuming this, the premise of Lemma 4.8 is true with

β “

ˆ

k ´ c

n ´ c

˙d ˆ

1 ´
1

pk ´ cqγ

˙

,

for some constant γ P p0, 1q, by the distance lemma for good slices (Lemma 4.6).

The conclusion of Lemma 4.8 then implies that

Pr
x„Un,k

rP pxq ‰ 0s ě

ˆ

k ´ c

n ´ c

˙dˆ

1 ´
1

pk ´ cqγ

˙

´

1 ´
c

n0.1

¯

ě

ˆ

k

n

˙dˆ

1 ´
1

kΩp1q

˙

,

using d ď kε and c ď 2d. Hence, it only remains to show that there exists a c P r0, 2ds such that
the slice pk ´ cq is pd, pq-good.

Let d “
řℓ

j“0 bjp
j and k “

řm
j“0 ajp

j be the p-ary representations of d and k respectively, with

bℓ, am ą 0 andm ě ℓ (since k ě d). We first note that for c1 P r0, pℓ´1s such that c1 ” k´d mod pℓ,
we have k1 :“ k ´ c1 ” d mod pℓ. Or equivalently for k1 “

řm
j“0 ujp

j in p-ary representation, we
have

uj “ bj , for all j ă ℓ. (5)

We now show that there exists a c2 P r0, ds such that when k2 :“ k1 ´ c2 is expressed in its p-ary
representation as k2 “

řm
j“0 vjp

j , it holds that vℓ ě bℓ and vj “ uj , for all j ă ℓ. We have two
cases:

• Case 1: uℓ ě bℓ. In this case, we can take c2 “ 0 and k2 “ k1.

• Case 2: uℓ ă bℓ. We take c2 “ puℓ ` 1qpℓ ď bℓ ¨ pℓ ď d. In this case, the p-ary representation
of k2 as described above satisfies vj “ uj for all j ă ℓ and vℓ “ p ´ 1.
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Taking c “ c1 ` c2, we see that k2 “ k ´ c is indeed pd, pq-good, with c ď 2d.

This finishes the proof of Lemma 4.1. ■

We now prove Lemma 4.8.

Proof of Lemma 4.8. Note that the proof is trivial for c “ 0. We will now show the lemma for
c ě 1. Consider the following way of sampling a point x from Un,k.

1. Initialize S “ H.

2. Choose s P rnszS uniformly at random, set xs “ 1, and add s to S.

3. Repeat Step 2 until |S| “ c.

4. Set the co-ordinates of x not in S according to the distribution Un´c,k´c.

5. Output x.

Let P1 P Pdpn´1, k´1,Zqq, P2 P Pdpn´2, k´2,Zqq, . . . , Pc P Pdpn´c, k´c,Zqq be the restrictions
of the polynomial P on the respective domains obtained by setting xs1 “ 1, xs2 “ 1, . . . , xsc “ 1

successively by the above random procedure, so that S “ ts1, s2, . . . , scu P
`

rns

c

˘

.

We claim that P1 is non-zero on t0, 1u
n´1
k´1 , with high probability over the choice of s1. To prove

this, let us call an index s P rns “bad” if for all a P t0, 1unk such that as “ 1, we have that P paq “ 0.
We observe that the probability of P1 being entirely zero over t0, 1u

n´1
k´1 is equal to the probability

of a uniformly random s P rns being bad. We show below that the number of such bad indices
s P rns is at most ℓ :“ tn{

?
ku. Towards a contradiction, suppose there are some ℓ bad indices

i1, i2, . . . , iℓ P rns. This means that if at least one of these co-ordinates takes value 1, P pxq evaluates
to 0. Thus the number of non-zeroes of P in t0, 1unk is upper bounded by the number of points

that take the value 0 on all these bad indices, i.e.,
`

n´ℓ
k

˘

. However, by the weak distance lemma

(Lemma 1.2), we know that the number of non-zeroes has to be at least
`

n´2d
k´d

˘

. This yields a

contradiction as we have
`

n´ℓ
k

˘

ă
`

n´2d
k´d

˘

by the following claim.

Claim 4.9. For every sufficiently large integer n and arbitrary integers k P rn1{4, n{2s, d P r1, k0.1s,
and ℓ “ tn{

?
ku, we have

ˆ

n ´ ℓ

k

˙

ă

ˆ

n ´ 2d

k ´ d

˙

.

Proof. We have

ˆ

n ´ ℓ

k

˙

ď

ˆ

n ´ 2d

k

˙

¨

ˆ

1 ´
k

n

˙ℓ´2d

ă

ˆ

n ´ 2d

k ´ d

˙

¨ nd ¨

ˆ

1 ´
k

n

˙ℓ´2d

.

Hence, it suffices to show that p1 ´ k
nqℓ´2d ď 1

nd . Using ℓ ´ 2d ě n{p4
?
kq, indeed we have that

p1 ´ k
nqℓ´2d ď p1 ´ k

nqn{p4
?
kq ď e´

?
k{4 ď 1

nd , using d ď k0.1 and k ě n1{4. ■
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By using the notation P 1 ı 0 to denote that a polynomial P 1 P Pdpn1, k1,Zqq has at least one
non-zero evaluation over the underlying slice, we have

Pr
s1„rns

rP1 ı 0s ě 1 ´
ℓ

n
ě 1 ´

1
?
k

ě 1 ´
1

n1{6
.

By the same argument for P2, . . . , Pc, we get with probability at least 1 ´ 1
pn´1q1{6 (over the choice

of S), that Pc has at least one non-zero evaluation over t0, 1u
n´c
k´c . Here, we note that we will need

to show that Claim 4.9 is also applicable if we replace n and k with n´ i and k´ i for every i P rcs;
this follows as c ď 2d ď kε, so d ď pk ´ iq0.1 and k ´ i P rpn ´ iq1{4, pn ´ iq{2s. Hence, at each step
i P r1, c ´ 1s, conditioned on Pi being non-zero over t0, 1u

n´i
k´i , we get that Pi`1 is non-zero over

t0, 1u
n´i´1
k´i´1 with probability at least 1 ´ 1

pn´iq1{6 ě 1 ´ 1
n0.1 .

Finally, applying the premise of the lemma statement (Lemma 4.8) for Q “ Pc, we get the desired
bound. More formally, we obtain

Pr
x„Un,k

rP pxq ‰ 0s ě Pr
s1„rns

rP1 ı 0s ¨ Pr
s2„rnszts1u

rP2 ı 0 | P1 ı 0s ¨ . . .

¨ ¨ ¨ ¨ Pr
sc„rnszts1,...,sc´1u

rPc ı 0 | Pc´1 ı 0s ¨ Pr
y„Un´c,k´c

rPcpyq ‰ 0 | Pc ı 0s

ě

ˆ

1 ´
1

n0.1

˙c

¨ β

ě β
´

1 ´
c

n0.1

¯

.

This concludes the proof of Lemma 4.8. ■

4.2 General Abelian Groups

In this subsection, we use the distance lemma for slices over cyclic groups of prime power order
Lemma 4.1 to get a distance lemma for slices over arbitrary Abelian groups. We prove Theorem 1.1
now.

Proof of Theorem 1.1. By negating all the variables if necessary, we can assume that k ď n{2. Let
P pxq P Pdpn, k,Gq be the following polynomial:

P pxq “
ÿ

IĎrns

|I|ďd

aI ¨ xI ,

where xI :“
ś

jPI xj . We first argue that it suffices to prove Theorem 1.1 for finite Abelian groups.
Then we will use the fundamental theorem of finite Abelian groups and our distance lemma for
cyclic groups (Lemma 4.1) to finish the proof.

Reducing to finitely generated Abelian groups Define G1 to be the subgroup of G gener-
ated by the coefficients of P , i.e.

G1 “ xtaI | I Ď rns, |I| ď duy
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Observe that we can treat the polynomial P pxq as a degree-d polynomial over the group G1 with a
non-zero evaluation on the slice t0, 1unk , i.e. P pxq P Pdpn, k,G1q. Thus we have reduced to the case
of finitely generated Abelian groups. Using the structure theorem of finitely generated Abelian
groups, we know that G1 is isomorphic to

G1 – Z
p
ℓ1
1

ˆ ¨ ¨ ¨ ˆ Z
pℓss

ˆ Zr

for some prime numbers p1, . . . , ps, positive integers ℓ1, . . . , ℓs and r P Zě0.

Reducing to finite Abelian groups We now show that there exists a finite Abelian group G2

and a polynomial P 2 P Pdpn, k,G2q such that the following holds:

Pr
x„Un,k

rP pxq ‰ 0s “ Pr
x„Un,k

rP 2pxq ‰ 0s

If r “ 0, we can take G2 “ G1 and we are done.
Otherwise, let M be a prime number greater than the absolute values of the last r co-ordinates
(using the isomorphism between G and Z

p
ℓ1
1

ˆ ¨ ¨ ¨ ˆ Z
pℓss

ˆ Zr) of the evaluations P pxq for all

x P t0, 1unk . Then, we take G2 :“ Z
p
ℓ1
1

ˆ ¨ ¨ ¨ ˆ Z
pℓss

ˆ Zr
M . Let aI “ paIp1q, . . . , aIps ` rqq P G1 be a

coefficient of P pxq. Define the coefficient a2
I P G2 as follows:

a2
I :“ paIp1q, aIp2q, . . . , aIpsq, aIps ` 1q mod M, . . . , aIps ` rq mod Mq

Now define the polynomial P 2pxq as follows:

P 2pxq “
ÿ

IĎrns

|I|ďd

a2
I ¨ xI ,

where xI :“
ś

jPI xj . For every x P t0, 1unk . we have that P pxq “ 0 ðñ P 2pxq “ 0, since by the
definition of M , the last r co-ordinates of P pxq can only take values strictly in between ´M and
M . Thus we have reduced to finite Abelian group G2.

Cyclic groups of prime power order We will now argue that we can further reduce it to the
case of cyclic groups of prime power order. For simplicity of notation, let the primes ps`1 “

¨ ¨ ¨ “ ps`r “ M , exponents ℓs`1 “ ¨ ¨ ¨ “ ℓs`r “ 1. We thus have G2 – Z
p
ℓ1
1

ˆ ¨ ¨ ¨ ˆ Z
p
ℓs`r
s`r

and

P 2pxq P Pdpn, k,G2q is non-zero on t0, 1unk . This means that there exists j P rs ` rs such that the
polynomial P 2pxq is a non-zero degree-d polynomial on t0, 1unk over the cyclic group Z

p
ℓj
j

.

Using Lemma 4.1, we know there exists a constant ε such that P 2pxq is non-zero on at least
αdp1 ´ Op1{kεqq ¨

`

n
k

˘

points over the cyclic group Z
p
ℓj
j

where α “ k{n. This implies that the

polynomial P 2pxq is non-zero on at least αdp1 ´ Op1{kεqq ¨
`

n
k

˘

points over the group G2. As we
argued above, this in particular implies that the polynomial polynomial P pxq is non-zero on at
least αdp1´Op1{kεqq fraction of points on the slice t0, 1unk over the Abelian group G. This finishes
the proof of Theorem 1.1. ■
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5 Low-degree Functions Over Slices

In this section we will give a simple proof of a lemma of Filmus and Ihringer [FI19] following the
proof idea of Nisan and Szegedy [NS92]. We will first give a couple of definitions and set the
notations for this section.

For a function fpx1, . . . , xnq on the slice t0, 1unk with coefficients in R, and for any two coordinates
i, j P rns ˆ rns, define f pijq to be the function where we swap the ith variable with the jth variable
in the function f .

Definition 5.1 (Influence). Let f : t0, 1un Ñ R be a function on the slice t0, 1unk . For pi, jq P

rns ˆ rns, the pi, jqth-influence of f , denoted by Infijpfq, is defined as,

Infijpfq :“
1

4
Pr

x„Un,k

rfpxq ‰ f pijqpxqs

The total influence of f , denoted by Infpfq, is defined as,

Infpfq :“
1

n

ÿ

1ďiăjďn

Infijpfq

Note that if i “ j in the above definition, then Infiipfq “ 0 and it does not contribute anything
towards the total influence.

A key lemma in the proof of [FI19] is a lower bound on every non-zero influence (see [FI19, Lemma
3.1]). They showed that there exists a constant α such that every non-zero influence of a degree-d
polynomial on the balanced slice is at least αd. The proof of this lemma in [FI19] uses analytic
techniques such as the Log-Sobolev inequality on the Boolean slice [LY98] and the Hypercontractive
inequality [DS96]. Using our distance lemma for the balanced slices (Theorem 3.18), we can im-
prove the lower bound to almost 1{2d (which is easily seen to be tight up to constant factors). Note
that the main result of this section only holds for degree d ď C log n for some absolute constant
C ą 0, it suffices to use the simpler proof of Theorem 3.18. We state the lemma below.

Lemma 5.2 (Lower bound on influences). Let fpx1, . . . , xnq be a non-zero degree-d function
on the balanced slice t0, 1unn{2. Then for every pi, jq P rns ˆ rns for which Infijpfq ą 0, the
following holds:

Infijpfq ě
1

4
¨
1

2d
¨

ˆ

1 ´
1

nε

˙

for some absolute constant ε ą 0.

Proof. Fix some pair pi, jq P rns ˆ rns with Infpijqpfq ą 0 and consider the polynomial gij on the
balanced slice, defined as follows: gijpxq :“ fpxq ´ f pijqpxq.
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Observe that since f is a degree-d polynomial, f pijq is also a degree-d polynomial, which means gij
is also a degree-d polynomial on the balanced slice. Since the influence Infijpfq ą 0, this means
that gij is non-zero on the slice t0, 1unn{2. Now using our distance lemma on the balanced slice
Theorem 3.18,

Pr
x„Un,n{2

rfpxq ‰ f pijqpxqs “ Pr
x„Un,n{2

rgijpxq ‰ 0s ě
1

2d
¨

ˆ

1 ´
1

nε

˙

ñ Infijpfq ě
1

4
¨
1

2d
¨

ˆ

1 ´
1

nε

˙

for some absolute constant ε ą 0. ■

Filmus and Ihringer [FI19, Lemma 3.3] use this lower bound on non-zero influences to get a bound
on junta of degree-d polynomials on the balanced slice. Using the above-mentioned improved lower
bound on non-zero influence, we can also improve the bounds in [FI19, Lemma 3.3].

Lemma 5.3. There exists an absolute constant C ą 0 such that for all degree parameters d P N
such that d ď C log n, the following holds. Every degree-d polynomial on the slice t0, 1unn{2 is a

ηpdq-junta, where

ηpdq “ Opd ¨ 2dq.

Proof. The proof is essentially the same proof as in [FI19], except for one inequality which can
be improved using Lemma 5.2. Let fpxq P Pdpn, n{2,Rq and let G be a graph on the vertex set
rns where pi, jq is an edge if Infijpfq ě 1{2d ¨ p1 ´ 1{nεq, where ε is the absolute constant from
Lemma 5.2. Let M be a maximal matching in G. We now proceed similar to the proof in [FI19,
Lemma 3.3] and we request the reader to refer [FI19] as we just highlight the changes in the proof
here.

Using Lemma 5.2, we get the following two inequalities upper and lower bounding the influence:
ˆ

1

4
¨
1

2d
¨

ˆ

1 ´
1

nε

˙˙

¨

ˆ

1 ´
1

n

˙

¨ M ď Infpfq ď d

ñ M ď Opd ¨ 2dq,

where we used the assumption d ď C log n in upper bounding 1{nε by 1
10 ¨ 1

2d
. Following the

argument of [FI19], this gives us that f is a 2M -junta, i.e., a Opd ¨ 2dq-junta. ■

As already noted in the introduction, a stronger upper bound of ηpdq “ Op2dq follows from the
work of [FI19; CHS20] (and can also be obtained by plugging Lemma 5.2 in place of [FI19, Lemma
3.3] in the proof of [FI19]). The advantage here is the relatively simple proof following exactly the
template of [NS92].

6 Improved Bound for Linear Functions

In this section, we show how to obtain an improvement over our distance lemma (Theorem 1.1) for
the case of linear polynomials, i.e., d “ 1. In particular, we will show the following.
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Theorem 6.1. Let G be an arbitrary Abelian group, and n ě 8 and k P rn ´ 1s be positive
integers. Then, for every polynomial P pxq P P1pn, k,Gq that is non-zero on t0, 1unk , we have

Pr
x„t0,1unk

rP pxq ‰ 0s ě
t ´ 1

n
,

where t “ mintk, n ´ ku.

This is an improvement over Theorem 1.1 as we have an additive term of 1{n as opposed to 1{nε for
some constant ε P p0, 1q. In particular, in the regime k ď nδ for small enough δ P p0, 1q, the above
theorem gives a lower bound of 1{n1´δ, while Theorem 1.1 fails to give anything non-trivial.

We note that this is also an improvement over the weak distance lemma shown by [ABPSS24]

(i.e., Lemma 1.2) as it gives a lower bound of kpn´kq

npn´1q
which is less than k´1

n for k ě
?
n ` 1. In

particular, taking P pxq “ x1, we see that our bound is almost tight. Furthermore, the additive term
of 1{n in the above theorem cannot be avoided (at least for k “ n{2 and up to a constant factor)
as the polynomial P pxq “ x1 ` x2 ` 1 in P1pn, k “ n{2,Z2q which is non-zero with probability
1
2 ´ 1

2pn´1q
.

We will now prove Theorem 6.1.

Proof of Theorem 6.1. Let P pxq “ a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn ` c, where a1, . . . , an, c P G. We
may (and we will) assume that a1, a2, . . . , an are not all equal (abbreviated as NAE from now),
as otherwise the polynomial always evaluates to a constant over t0, 1uk since

ř

iPrns xi “ k for all
x P t0, 1unk . Hence the desired probability is equal to 1 since we are guaranteed that P pxq ‰ 0 for
at least one point x P t0, 1unk . We may further assume that k ď n{2, as otherwise, we can consider
the evaluations of the polynomial P p1 ´ x1, . . . , 1 ´ xnq over x P t0, 1unn´k.

We divide the proof into two cases depending on whether k divides n:

Case 1: k divides n. That is, n “ mk for some integer m ě 2. Let M P rnskˆm be the matrix
formed by arranging rns according to a uniformly random permutation. Denoting the j-th column
of M by Mj , let sumpMjq “

ř

iPMj
ai. We note that

Pr
x„t0,1unk

rP pxq ‰ 0s “ Pr
M

rsumpM1q ‰ ´cs, (6)

as both LHS and RHS are essentially picking k elements (without replacement) from a1, . . . , an
uniformly at random and checking whether their sum is not equal to ´c. We construct M by the
following random process:

• Partition rns into k buckets, B1, B2, . . . , Bk Ď rns, each of size m, uniformly at random.

• Set the i-th row of M to be a uniformly random permutation of Bi, for each i P rks indepen-
dently.

We say that an index i P rks is “good” if the elements pajqjPBi are NAE and “bad” otherwise. Since
a1, . . . , an are NAE, one might expect that there is at least one good index with high probability
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(over the randomness of the first step i.e., choosing the buckets B1, . . . , Bk). That is, we give an
upper bound on

Pr
B1,...,Bk

rall the indices in rks are bads.

Note that for the above probability to be positive, the number of times each ai appears in paiqiPrns

must be a multiple of m. Thus we may assume that the multiset paiqiPrns is of the form: b1 (taken
f1m times), b2 (taken f2m times), . . . bℓ (taken fℓm times), where ℓ ě 2 and b1, . . . , bℓ are mutually
distinct elements of G and f1, f2, . . . , fℓ ě 1.

We handle the case of ℓ “ m “ 2 and either f1 “ 1 or f2 “ 1 separately by the following claim.

Claim 6.2. If ℓ “ m “ 2 and at least one of f1 or f2 is equal to 1, then

Pr
x„t0,1unk

rP pxq ‰ 0s ě
1

2
´

1

2pn ´ 1q
ě

k ´ 1

n
.

Hence, for the rest of the argument, we will assume that m, ℓ and fi’s are such that the premise
of Claim 6.2 are not met. We then bound the bad probability as follows:

Claim 6.3.

Pr
B1,...,Bk

rall the indices in rks are bads “

`

k
f1, f2, ..., fℓ

˘

`

n
f1m, f2m, ..., fℓm

˘ ď
1

n
.

Given Claim 6.3, we conclude that with probability at least 1´ 1{n, there exists at least one index
i P rks such that pajqjPBi are NAE; suppose h1 ‰ h2 P pajqjPBi Ď G be such elements. Recall
that we permute the elements corresponding to Bi randomly to form the i-th row of the matrix
M . As this is performed independently across the rows, we may fix an arbitrary permutation of all
the rows except the i-th one and argue a lower bound on the probability of P pxq being non-zero
by (6). Let g1, . . . , gi, . . . , gk P G be the corresponding group elements in the first column, where
pgjqj‰i’s are some constants and gi is picked uniformly at random from the multiset pajqjPBi . We
have sumpM1q “ g1 ` ¨ ¨ ¨ ` gk. Notice that the sum corresponding to gi “ h1 and gi “ h2 are not
equal as h1 ‰ h2. Hence,

Pr
gi

rg1 ` ¨ ¨ ¨ ` gk ‰ ´cs ě 1{m.

Therefore, we get

Pr
M

rsumpM1q ‰ ´c | there exists a good index i P rkss ě 1{m “ k{n.

Combining with Claim 6.3, this gives us that PrM rsumpM1q ‰ ´cs ě pk ´ 1q{n, thus finishing the
proof of the theorem (when k divides n).

We now move to the case when k does not divide n.

Case 2: k does not divide n. Suppose n “ mk ` k1 for some positive integers m and k1 ă k.
Since k ď n{2, this impliesm ě 2. Similar to the previous argument, we will analyze the probability
of P pxq being non-zero using the group elements. In particular, we would like to lower bound the
probability of

ř

iPA ai ‰ ´c, where A Ď rns is subset of size k chosen uniformly at random. We
will first sample A by the following process.
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– Choose a uniformly random subset B of rns of size mk.

– Choose a uniformly random subset A of B of size k.

We claim that with probability at least mk{n, the elements paiqiPB are NAE. More formally, we
claim that Pr

B„prns

mkq
rpaiqiPB are NAEs ě mk{n. To show this, suppose g1 ‰ g2 P G be two distinct

elements in paiqiPrns. We have two cases.

• Case (i): There exists a g P G that occurs at least mk times in paiqiPrns. Since g1 ‰ g2,
at least one of these two elements is not equal to g; say g ‰ g1 without loss of generality. We
claim that g1 P paiqiPB implies paiqiPB are NAE. To see this, we note that n´mk “ k1 ă mk,
so g must always appear in paiqiPB. Hence, paiqiPB are NAE whenever g1 P paiqiPB. As B is
a uniformly random subset of size mk, this event (i.e., g1 P paiqiPB) happens with probability
at least mk{n.

• Case (ii): No such element exists. In this case, paiqiPB are NAE for all choices of

B P
`

rns

mk

˘

.

Therefore, Pr
B„prns

mkq
rpaiqiPB are NAEs ě mk{n. Conditioned on B satisfying the condition that

paiqiPB are NAE, we note that
ř

iPA ai ‰ ´c with probability at least pk ´ 1q{pmkq by using the
fact that we have already established in Theorem 6.1 for the case when k divides n. Hence, the
final probability is

Pr
A„prns

k q

„

ÿ

iPA

ai ‰ ´c

ȷ

ě Pr
B„prns

mkq

„

paiqiPB are NAE

ȷ

¨ Pr
A„pBkq

„

ÿ

iPA

ai ‰ ´c | paiqiPB are NAE

ȷ

ě
mk

n
¨
k ´ 1

mk
“

k ´ 1

n
.

■

We end with the proofs of Claim 6.2 and Claim 6.3.

Proof of Claim 6.2. We have k “ n{2. Without loss of generality, suppose f1 “ 1. Recall that the
multiset paiqiPrns is equal to b1 repeated 2f1 “ 2 times and b2 repeated 2f2 “ n´ 2 times, for some
b1 ‰ b2 P G. We may further assume that P pxq “ a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn ` c where a1 “ a2 “ b1
and a3 “ a4 “ ¨ ¨ ¨ “ an “ b2. As

řn
i“1 xi “ k for all points x P t0, 1unk , we have

P pxq “ b1px1 ` x2q ` b2px3 ` x4 ` ¨ ¨ ¨ ` xnq ` c

“ b1px1 ` x2q ` b2pk ´ x1 ´ x2q ` c

“ pb1 ´ b2qpx1 ` x2q ` kb2 ` c.

Let b :“ b1 ´ b2 and b1 :“ kb2 ` c. Then we have, P pxq “

$

’

&

’

%

b1, if x1 “ x2 “ 0,

b ` b1, if x1 ` x2 “ 1,

2b ` b1, otherwise.

Since b ‰ 0, we have the implication

b ` b1 “ 0 ùñ pb1 ‰ 0 and 2b ` b1 ‰ 0q.
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Hence,

Pr
x„t0,1un

n{2

rP pxq ‰ 0s ě min

"

Pr
x„t0,1un

n{2

rx1 ` x2 “ 1s, Pr
x„t0,1un

n{2

rx1 ` x2 ‰ 1s

*

“
1

2
´

1

2pn ´ 1q
.

■

Now, we prove Claim 6.3.

Proof of Claim 6.3. We consider two cases depending on the value of m.

• Case 1: m “ 2. We have n “ 2k. We note that at least one of the two conditions below
must be met:

– ℓ ě 3, or

– ℓ “ 2 and f1, f2 ě 2.

Regardless of which of the above two conditions is satisfied, we can always partition the
multiset paiqiPrns into two sub(multi)sets S1 Ď G and S2 Ď G, such that 4 ď |S1| ď n{2 and
for every g1 P S1 and g2 P S2, we have that g1 ‰ g2. We now note that a necessary condition
for an index i P rks to be bad is taj |j P Biu being a subset (as a multiset) of S1 or S2. Hence,

the probability that all i P rks are bad is at most
`

k
f

˘

{
`

n
2f

˘

, where f :“ |S1|{2 P r2, k{2s. As
`

k
f

˘

{
`

n
2f

˘

is an increasing function of f when f ď k{2, we can lower bound it by the value

corresponding to f “ 2, i.e.,
pk2q

pn4q
“ 3

pn´1qpn´3q
ď 1

n .

• Case 2: m ě 3. We note that the numerator of the fraction in Claim 6.3 is A :“
`

k
f1, f2, ..., fℓ

˘

ě k (as each fi ě 1) and the denominator is
`

km
f1m, f2m, ..., fℓm

˘

ě
`

k
f1, f2, ..., fℓ

˘m
“

Am by a simple counting argument. Hence, we have

`

k
f1, f2, ..., fℓ

˘

`

km
f1m, f2m, ..., fℓm

˘ ď
A

Am
ď

1

km´1
ď

1

mk
“

1

n
.

The last inequality follows using km´2 ě m for k,m ě 3 and for k “ 2,m “ 4.

■
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A Appendix

A.1 Proofs of Claim 3.7 and Claim 3.8

Proof of Claim 3.7. By the definition of the weight function w of the generators, we have
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Finally, we prove Claim 3.8.

Proof of Claim 3.8. Letting B :“ td P r0..ms | |2d ´ m| ą
?
50m logmu, we can explicitly express

the probability as
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mq from the proof of Claim 3.7. To bound the second factor
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dPB
pmd q
2m , we use a Chernoff bound for the sum of m i.i.d. copies of a uniformly random Boolean

variable. In particular, we get
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dPB
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2m ď Op1{m3q. Hence Prx„Dr||x| ´ m| ą

?
50m logms ď

Op1{m2q. ■

A.2 Proof of Claim 3.15

Claim 3.15 (Upper bound on probability of (self) good matchings). Consider the complete bipartite
graph Kn{2,n{2 on L

Ť

R where L “ t1, 3, . . . , n ´ 1u and R “ t2, 4, . . . , nu. Let τ “ nδ for a
sufficiently small δ ą 0. Then,

Pr
M

rM is a t-good matchings ď
1

nΩptq
, for all t ď τ,

where the above probability is over the choice of a uniformly random matching M. Also,

Pr
M

rM is a t-self good matchings ď
1

nΩptq
, for all t ą τ,

where the above probability is over the choice of a uniformly random matching M.

Proof of Claim 3.15. Let us first how to describe a good matching, or in other words, how to
generate a good matching. We first choose a subset T Ď u´1 t1u of size 0 ď k ď t which will be
matched outside the set t2, 4, . . . , 2tu. To satisfy the good matching condition, it enforces that for
every i P T , Mp2iq P t1, 3, . . . , 2t ´ 1u zT . We choose remaining k vertices from u´1 t0u which will
be matched outside t1, 3, . . . , 2t ´ 1u. This also enforces that pt ´ kq ě k ñ k ď t{2. Finally, we
also account for the possible matching. This gives us:

Pr
M

rM is a good matchings “

t{2
ÿ

k“0

`

t
k

˘`

t´k
k

˘

pt ´ kq!pn{2 ´ t ` kq!
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(7)
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We upper bound
`

t
k

˘

,
`

t´k
k

˘

, and pt´kq! by tt for all 0 ď k ď t{2. Since t ď nδ, we can upper bound
pn{2 ´ t ` kq by pn{2 ´ t{2q! for all 0 ď k ď t{2. Using these we get,

Pr
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rM is a good matchings ď
t3t

`n{2
t{2

˘

pt{2q!

Employing the standard binomial estimate that
`

N
K

˘

ě pN{KqK and Stirling’s approximation, we
get,

Pr
M

rM is a good matchings ď
t3t

nt{2
“

1

nΩptq

Now we upper bound the probability that a random matching is a t-self good matching. Observe
that if a matching M is a t-self good matching, then it implies there exists a subset rT Ă rts of
size t{2 such that Mp2i ´ 1q “ 2i for i P rT . We can have an arbitrary matching in the remaining
pn{2 ´ t{2q vertices in both L and R. This gives us:

Pr
M

rM is a t-self good matchings ď

`

t
t{2

˘

pn{2 ´ t{2q!

pn{2q!
ď

1

nΩptq

This finishes the proof of Claim 3.15. ■

A.3 Proof of Lemma 4.4

Lemma 4.4 (Number of degree-d polynomials on the slice). [Wil90]. For every degree parameter
d P N and for every slice parameter k such that d ď mintk, n ´ ku, the number of distinct degree-d

polynomial functions on t0, 1unk is at least qpndq.

The proof is by induction on the parameter t “ pk ´ dq ¨ pn ´ k ´ dq.

The base case of the induction corresponds to the case when t “ 0, i.e. d “ mintk, n ´ ku. In this
case, we want to show that any function f : t0, 1unk Ñ Zq is a degree-d polynomial. To show this,
it suffices to show that any δ-function on t0, 1unk can be written as a polynomial of degree at most
d.

Consider without loss of generality the δ-function at the point a “ 1k0n´k. If d “ k, then the
monomial x1 ¨ ¨ ¨xd computes exactly this δ-function. On the other hand, if d “ n ´ k, we can
instead use the polyomial p1 ´ x1q ¨ ¨ ¨ p1 ´ xdq. In either case, we are done. This proves the base

case, i.e. that |Pdpn, k,Zqq| ě qpndq in this case.

For the induction, assume that d ă mintk, n ´ ku. We claim that

|Pdpn, k,Zqq| ě |Pdpn ´ 1, k,Zqq ˆ Pd´1pn ´ 1, k ´ 1,Zqq| (8)

which immediately implies the inductive case using the induction hypothesis9, as we have

|Pdpn ´ 1, k,Zqq ˆ Pd´1pn ´ 1, k ´ 1,Zqq| ě |Pdpn ´ 1, k,Zqq| ¨ |Pd´1pn ´ 1, k ´ 1,Zqq|

9Note that the induction hypothesis is applicable as either k ´ d or n ´ k ´ d drops by 1 while the other remains
the same.
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ě qpn´1
d q ¨ qpn´1

d´1q “ qpndq.

To prove Equation (8), we give an injection ι from the set Pdpn´1, k,ZqqˆPd´1pn´1, k´1,Zqq to
the set Pdpn, k,Zqq. For each function in Pdpn ´ 1, k,Zqq, we fix arbitrarily a polynomial of degree
at most d representing this function, and do the same for functions in Pd´1pn ´ 1, k ´ 1,Zqq with
the degree parameter being d ´ 1.

Let pP,Qq P Pdpn ´ 1, k,Zqq ˆ Pd´1pn ´ 1, k ´ 1,Zqq be the chosen polynomial representations of
a pair of functions in the corresponding sets. Define ιpP,Qq to be

Rpx1, . . . , xnq “ P px1, . . . , xn´1q ` xn ¨ Qpx1, . . . , xn´1q.

The map is injective because the function computed by P (and hence the underlying polynomial
which is fixed by the function) can be obtained by restricting R to the points where xn “ 0. Further,
the function Q can be obtained by evaluating R at the points where xn “ 1 and subtracting the
value of the polynomial P evaluated at the same point.

This proves Equation (8) and concludes the inductive case.
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